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LETTER TO THE EDITOR 

Random graphs and network communication 

F Y W u  
Department of Physics, Northeastern University, Boston, Massachusetts 021 15, USA 

Received 26 April 1982 

Abstract. The problem of random graphs, which arises in the analysis of network reliability 
in communication theory, is considered here as a bond percolation. A closed form 
expression is obtained for the cluster-size generating function from which the mean cluster 
size as well as the percolation probability are derived. In a network of N + stations in 
which the communication between any two stations is intact with a probability a / N ,  it is 
found that for a < 1 the network breaks into clusters of average size of (1 -a)-’ stations 
and a/(l -a) links, while for a > 1 there is a non-zero percolation probability. 

A random graph is a collection of N vertices (sites) which are governed by a probability 
mechanism such that each pair of vertices is joined by an edge with a prescribed 
probability p ,  independent of the presence or absence of any other edges. If we regard 
the vertices as stations and the edges as communication links between the stations, 
then the random graphs simulate a communication network (see e.g. Welsh 1977). 
Writing p = a / N  and a small, we expect the network to break down, even in the 
limit of N + m ,  and decompose into isolated clusters of finite sizes which are not 
linked to one another via communication. But for a greater than a certain critical 
value a. a non-zero probability arises that a given station is linked with an infinite 
number of other stations. 

The random graphs so defined also describe a bond percolation process (Welsh 
1977), if the edges are regarded as occupying bonds. This consideration provides the 
possibility of an alternative approach to the problem of network reliability, a possibility 
which appears not to have been adequately examined. In this Letter we take up this 
consideration. We shall first formulate the percolation problem as a Potts model 
(Kasteleyn and Fortuin 1969), which is soluble in the limit of N + m .  Relevant 
information regarding the network reliability and random graphs is then derived from 
this solution. 

We begin by writing down the Potts Hamiltonian relevant to the percolation 
problem. Since the bond percolation is long ranged in the sense that any two vertices 
can be connected, we consider a system of q-state Potts spins (for a review on the 
Potts model see Wu (1982)) having a similar long-range interaction. Thus, we consider 
the Hamiltonian X given by 

where, in addition to the two-spin interactions KIN between all pairs (i’), there are 
also external fields M / N  and L (cf equation (1.18) of Wu (1982)). These external 
fields are needed to generate quantities relevant to the cluster size, and will eventually 
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be set to zero. In (l), ui =0, 1 , .  . . , q- 1 refers to the spin state at the ith site, 
i = 1 , 2 , .  . . , N, and S(a, p )  is the Kronecker delta function. 

Consider the random graphs now regarded as configurations of the bond percola- 
tion. Following Kasteleyn and Fortuin (1969), we can establish that this bond 
percolation is generated by the Potts model (1). More specifically (cf equation (4.9) 
of Wu (1982)), let 2 ( q  ; K, M, L) be the partition function of (1) and write 

then the cluster-size generating function, G(L, L1) for the percolation process is given 
by 

Here the average ( ) is taken over all bond percolation configurations with the bond 
occupation probability 

the summation 8, in (3) is taken over all clusters of the percolation configuration and 
s,, b, denote, respectively, the numbers of sites and bonds in a cluster. 

The cluster-size generating function G(L, L1) generates the various quantities of 
interest in the percolation problem. In particular, the percolation probability P ( a )  
and the mean cluster size S(a) (of the finite cluster containing a given vertex) are 
given by (see e.g. Wu 1978) 

where 

We next proceed to compute G(L,L1)  by solving the Potts model (1). For N 
large, (4) and (5) give 

K = a  e-L1, M = a (1 - e-=,). (9) 

Also, in the limit of N + CO, Hamiltonian (1) is most conveniently dealt with by using 
a variational approach (Wu 1982). 

Let xi denote the fraction of spins that are in the spin state i = 0, 1, . . . , 4 - 1. We 
look for a solution with a long-range order in, say, the i = 0 spin state. To this end 
we write 
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where 0 6 s =s 1 is the order parameter. We then obtain from (1) and (2): 

A(q;K,M,L)= max 

where U = 1 + (q - 1)s. Let so be the value of the order parameter which maximises 
(1 1). Straightforward algebra leads to 

where so is determined from 

M 
4 

Kso+ L +- [1+ (q - l)sO] = In 

Substitution of (12) into (3) after using (9) now yields 

G(L, L1) = 1 -so -fa e-='(1 -so)' 

a -a e-=1(1 -so) +L +in(l -so) = 0. 

(14) 

where so is determined from (13) at q = 1, which now becomes, after introducing (9), 

(15) 

Finally, we obtain from (6), (7), and (14) and (15) the results 

P b  1 = so, (16) 
S(a) = (1 - so)/( 1 - a + aso) 

= a/(l -a +aso)  by bond content, (17) 

by site content, 

where so is determined from 

asO+ln( l  -so) = 0. (18) 

Equations (16)-( 18) are our main results. For a G ac = 1, (18) has only one solution, 
namely, so = 0, so that P(a)  = 0 identically; the mean cluster size is then (1 -a)-' by 
site content and a/(l -a) by bond content. For a > a. another solution so > 0 arises 
which gives rise to a larger A (as seen from (11) in the limit of q +  1 +). Therefore, 
we should take this solution, and this leads to a non-zero percolation probability 
P(a)  =so. Near the threshold ac = 1, (16), (17) and (18) give 

(19) 

leading to the classical percolation exponents /3 = y = y ' =  1. It is not surprising that 
we should obtain these 'mean field' exponents, since the expression (1) describes 
precisely a mean field Hamiltonian (Kac 1968) for the Potts model. 

Erdos and RCnyi (1960) have studied an equivalent graph problem in which the 
number of connecting edges is fixed at aN/2, the average number of edges in the 
present problem. Using a purely probabilistic approach, they showed that the cluster 
structures of the random graphs exhibit a drastic change at a = 1. Therefore, our 
results are consistent with their findings. After the completion of this work I learned 

1 P ( a )  = 2(a - ac),  S(a) = la -a,/- , 
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that A Coniglio has also considered this percolation problem using a different vari- 
ational approach. 

To summarise, we have considered the problem of network reliability using a Potts 
model approach. In a network of N + CO stations, where the communication between 
any two stations is intact with a probability a/N,  we have found that, for CY s 1, the 
network breaks into clusters of stations which have an average size of (1 -CY)-* stations 
and a / ( l  -a) communication lines. When a > 1, there is a non-zero probability P(cY),  
obtained from aP(a)  +In[l - -P(a)]  = 0, that a given station maintains communication 
with an infinite number of other stations. 

I wish to thank H E Stanley for the kind hospitality at the Center for Polymer Physics, 
Boston University, where this work was initiated. This research has been supported 
in part by grants from the National Science Foundation and the US Army Research 
Office. 
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